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University of Oulu

Finland
mika.mantyla@oulu.fi

Abstract—Test case prioritization is one of the most practically
useful activities in testing, specially for large scale systems. The
goal is ranking the existing test cases in a way that they detect
faults as soon as possible, so that any partial execution of the
test suite detects maximum number of defects for the given
budget. Test prioritization becomes even more important when
the test execution is time consuming, e.g., manual system tests
vs. automated unit tests. Most existing test case prioritization
techniques are based on code coverage, which requires access to
source code. However, manual testing is mainly done in a black-
box manner (manual testers do not have access to the source
code). Therefore, in this paper, we first examine the existing test
case prioritization techniques and modify them to be applicable
on manual black-box system testing. We specifically study a
coverage-based, a diversity-based, and a risk driven approach for
test case prioritization. Our empirical study on four older releases
of Mozilla Firefox shows that none of the techniques are strongly
dominating the others in all releases. However, when we study
nine more recent releases of Firefox, where the development has
been moved from a traditional to a more agile and rapid release
environment, we see a very signifiant difference (on average 65%
effectiveness improvement) between the risk-driven approach and
its alternatives. Our conclusion, based on one case study of 13
releases of an industrial system, is that test suites in rapid release
environments, potentially, can be very effectively prioritized for
execution, based on their historical riskiness; whereas the same
conclusions do not hold in the traditional software development
environments.

I. INTRODUCTION

Testing has always been one of the main methods of
software quality assurance in industry [1]. The emphasis on
testing has been growing with the wide spread application
of Agile methodologies and continuos integration [2]. Such
methodologies and approaches suggest running all tests after
each and every small change, which stops postponing the
potential debugging and bug fixing activities to the end of
the iteration/release. This also eases the debugging process
due to the small modifications that should be investigated,
per test failure. However, rerunning all tests on large scale
systems is not possible, even if it is scheduled once a day as a
nightly integration build [2]. So to follow continuos integration
principles in large scale systems, we need to choose a subset of
all test cases to be executed in each build; Or ideally, prioritize
the test cases so that depending on the time constraints of the
build, only the most important tests be executed.

test case prioritization is not a new concept in software test-
ing. In the context of regression testing, researchers have pro-

posed several techniques to effectively prioritize the existing
test cases. Among them coverage-based heuristics (prioritizing
tests with higher code coverage, e.g., statement coverage)
have been very popular [3]. The main assumption in such
techniques is the availability of code coverage information
(or accessibility of the source code to calculate such info).
Unfortunately, that is unlikely in the manual system-level
testing, where the testers (often non-technical people) only
have access to the system as a black-box. These types of testing
is mostly done through the system’s graphical user interface,
rather than calling source code methods in automated tests.
Thus such test scripts do not reveal even the APIs of the source
code, which could be used for test prioritization.

One potential solution is instrumenting the code by the
development team to record the code coverage of the test
cases, while being executed by the manual testers, and use this
information in the later releases. This approach has three major
issues: 1) the cost of instrumenting, recording, and maintaining
all these coverage data, per release, if it is not already in place,
2) incompleteness of such coverage data for the new test cases
(you only know the code coverage if you already have executed
the exact test), and 3) inaccuracy of such coverage data on
the new or modified source code. Another possible solution is
using requirement-level coverage information [4]. Again, these
types of approaches require additional information in terms of
requirement documents that are not necessarily available for
many commercial and open source systems.

Therefore, in this paper, we first examine the existing
heuristics that can potentially be applied on manual black-box
system-level testing. The techniques under study fall under
three heuristics: a) covering maximum topics of the test cases.
Topics are extracted from the test cases by a text mining
algorithm (originated from [5]), b) diversifying test cases using
a distance function applied on the textual data of the test cases
(originated from [6]), and c) clustering test cases based on
their riskiness, which is determined based on whether they
have been detecting faults in the previous releases or not
(originated from [7]). We then implement and exercise these
techniques on four releases of Mozilla Firefox, which are
developed by a traditional development approach, i.e., yearly
releases. The results show that non of the proposed techniques
are significantly dominating the others, in all four releases.
In addition, they are not much more effective than a simple
random prioritization.

We then study the same techniques on nine more recent



releases of Mozilla Firefox, where the development team
has switched to a rapid and frequent release development
methodology. The results of the study show that, interestingly,
this time one approach, our risk-driven approach, is by far
and consistently dominating the others (on average 65% more
effective in terms of the APFD measure [3], which will be
defined in Section IV). The strong results of risk-driven ap-
proach not only suggest a potential tool for developers/testers
in the rapid release community to prioritize their tests, but also
promote rapid release over traditional development, due to the
lack of an effective alternative in the traditional development
context.

II. BACKGROUND AND RELATED WORK

In this section, we shortly review different test prioritization
techniques, explain the related work, and introduce rapid re-
lease and compare it with the traditional software development.

A. Test case prioritization

One of the challenges of software testing is optimizing
the order of test case execution in a test suite, so that they
detect maximum number of faults for any given testing budget.
The testing budget is always limited and thus not enough for
exercising the massive test suites of large scale systems. Three
typical solutions that are studied in the literature are test suite
reduction, test case selection, and test case prioritization. Test
suite reduction [8] usually removes redundant test cases from
a test suite and test case selection [8] selects the most fault-
revealing tests based on a given heuristic. However, test case
prioritization (TCP) [8] focuses on ranking all existing tests,
without eliminating any test case. In other words, when test
cases are prioritized, one executes the test cases in the given
order, until the testing budget is over. Thus a TCP’s goal is
to optimize the overall fault detection rate of the executed test
cases, for any given budget.

There are several TCP techniques available [8], where each
technique may have access to different types of information
and uses different heuristics to achieve the TCP’s goal. In the
rest of this section, we summarize the key TCP techniques,
based on their inputs and heuristics.

1) Input resources for TCPs: The main input resources
available for a TCP technique are as follows:

Change information: A TCP in the context of regression
testing usually analyzes the source and test code before and af-
ter each change and identifies (directly and indirectly) affected
parts of the code. The TCP may then prioritize test cases that
execute the affected parts over the other tests. The emphasis
of these approaches is on change impact analysis [9], [10].

Historical fault detection information: TCPs may use
fault detection information of each test case on the previous
versions of the software, as a basis to identify its riskiness
[11], [7]. The high-level heuristic is that the test cases that
failed in the past (detected faults), are riskier and should be
ranked higher. A variation of this high level idea may assign
higher rank to more severe faults and their corresponding test
cases [12]. In a recent study by Elbaum et. al. [13], which
was independently conducted at the same time as this paper,
previous faults have been used as a basis of prioritization in
the context of continuous integration at Google.

Dynamic and static coverage data: Another common
resource that is being used in TCPs is the code coverage of
each test case [3], [8]. The coverage can be of any sort, e.g.,
statement, branch, and method coverage. Such coverage can be
obtained by dynamically analyzing the program execution or
by statically analyzing the test and source code. The dynamic
analysis is more accurate, but it requires a real execution of
the test cases. Note that executing test cases to calculate the
coverage is not an option for TCPs due to the nature of the
problem (the limited budget). Therefore, the dynamic coverage
data can only be used, if they are already available from the
previous executions. But this data may not be perfect since
for instance the coverage data for the new test cases is not
available from previous test suite executions. Also, the code
change from a release to another may reduce the accuracy
of such coverage data, even for the old test cases running
on the modified source code. In addition, in many scenarios,
instrumenting the code for dynamic analysis and keeping all
the coverage data from the previous versions are not practical.

In the absence of execution information, coverage-based
TCP techniques rank the test cases solely based on the static
analysis of the test cases and/or the source code. For example,
one can calculate method coverage of test cases, by extracting
the sequences of method calls in the source code for the given
test cases, by static analysis [14]. Of course, the availability of
test scripts that contain such information, e.g., method calls,
is a prerequisite here, which does not hold in some cases like
manual test cases written in natural languages.

Specification models or requirement documents: In
model-based testing, TCPs have access to the specification
models of the software under test. Test cases in this context
are generated from the model. For example, a typical scenario
is specifying the software by a state machine and test cases
by paths in the state machine. A TCP, in this example, would
prioritize test cases knowing which paths in the model are exe-
cuted by which test cases [15], [16], [17]. There are also some
studies that prioritize test cases based on software requirement
artifacts [4], [18], [19]. However, all the approaches in this
category require extra information about the software that is
not commonly available, when prioritizing test cases.

Test scripts: Finally, there are a few TCP techniques that
only look at the test scripts as a source of information. These
TCPs are usually applicable in a wider range of domains,
where the other mentioned sources of data may not be avail-
able. For instance, in [5] the authors derive a topic model
from the test scripts, which approximates the features that
each test case covers. There are also cases where the test
scripts are taken as strings of words, without any extracted
knowledge attached to them. Given such data per test, TCPs in
this category may apply different objectives such diversifying
tests or maximizing some sort of coverage, which we explain
in the next subsection.

Availability of any of these resources is very context
dependent. However, in general, testing type directly affects
the input resources. For instance, in the case of white-box
unit testing, TCPs usually have access to both test code and
the source code [3], but in black-box testing the TCP only
have access to the test code and potentially specification or
requirements information. In the context of this paper, the only



available data is the test cases written in natural language and
the historical fault detection information.

2) Objectives of TCPs: So far we reviewed some of the
most common input sources that are available for TCPs. Given
an input, a TCP uses a heuristic to optimize its objective. Two
common heuristics from the literature are as follows:

Maximizing coverage: Since coverage info is one of the
most used resources for TCPs, heuristics based on coverage
are also well-studied. Given the coverage of the test cases
one common heuristic is assigning higher rank to test cases
that examine uncovered parts of the code. For example, a
common objective is maximizing (additional) coverage [3] by
a greedy algorithm. Maximizing coverage has also been done
by clustering [20] or evolutionary search algorithms [21].

Diversifying test cases: More recently, researchers have
also proposed another heuristic, diversity-based TCP, which
tries to spread the testing budget evenly across different parts
of the code [6]. The hypothesis is that similar test cases detect
the same faults and thus we should exercise more diverse test
cases to detect more faults [22]. Diversification of test cases
can be applied on different levels, e.g., method calls, extracted
topics of the test cases, and the text of the test scripts.

In Section III, we will cover three most relevant TCP
techniques to our case study, in more details.

B. Rapid Releases

Speed in delivering software has become vitally important
in software development. Some even claim that increasing it
should be the top priority of the software development: “In-
creasing speed trumps any other improvement software R&D
can provide to the company” [23]. Companies offering web-
based services have taken this to the extreme, e.g., Amazon
deploys software on every 11.6 seconds, on average [24].
However, the desire to increase speed in software development
is not limited to companies operating in web services. Ac-
cording to our recent literature review [25], rapid releases are
practiced in multiple domains including automotive, finance,
telecom, and even in high reliability domains like space and
energy. Obviously, companies operating in those domains do
not deploy as frequently as Amazon, yet they are deploying
faster than they use to.

Rapid releases originate from several sources [25]. Agile
software development highlights the importance of rapid re-
leases, as one of its principles states “Deliver working software
frequently, from a couple of weeks to a couple of months,
with a preference to the shorter timescale” [26]. Similarly
open source software development recognizes the importance
of rapid releases with a well-known slogan from Raymond’s
book: [27] “Release early. Release often”. The change to rapid
releases may also be motivated by declining market share. This
happened in Mozilla Firefox browser project as it was losing
market share to Google Chrome who already utilized the rapid
release model. Therefore, Mozilla Firefox changed its release
model from traditional, annual release, to rapid releases where
a new version is released once every six weeks.

In this paper, we use data from the Mozilla Firefox project
transition to rapid releases. This change has been studied in the
past. Mantyla et al. [25] found that switch to rapid releases

makes testing easier because the scope is narrower. On the
other hand, testing in the rapid releases becomes even more
deadline oriented. The increased speed in testing also made it
more difficult to attract larger volunteer tester community and
forced Firefox project to use more sub-contractors. However,
these large changes to the testing process niether produced a
significant decline in the quality of the Firefox browser [28]
nor did change the source code patch life cycle [29]. In
this paper, we will look at the differences between rapid and
traditional releases, in the context of test case prioritization.

III. BLACK-BOX MANUAL TEST PRIORITIZATION

In this paper, we are interested in the TCP problem in
the context of manual system-level black-box testing. This
type of tests can also be used for acceptance testing. These
tests usually explain the steps in a natural language (e.g.,
instructions in English) and no information from the code
or APIs are available to extract. This limits the number of
applicable TCPs. In this paper, we have modified and analyzed
three most relevant existing TCP techniques, to our context.

A. Topic coverage-based

As discussed in Section II, code coverage-based TCPs are
the most common TCPs, in the literature and in practice.
However, our black-box systems tests written in a natural
language do not provide any information about the code
coverage. Though the usual code coverage measures (e.g.,
statement coverage) can not be directly calculated, given our
test cases, we have modified a TCP technique that provides
us an alternative concept to cover. The concept is called topic
and the TCP technique is based on topic coverage. The idea
behind our topic coverage-based TCP is that if you do not test
a topic you won’t find defects related to that topic. In [5],
the authors proposed a black-box topic-coverage-based TCP
that uses a topic modeling technique called Latent Dirichlet
Allocation (LDA) [30] to approximate business concerns of
the software under test. They applied LDA on linguistic data in
the test scripts (identifier names, comments, and string literals)
and extracted the topics for each test cases. The goal was to
rank tests so that they cover more topics sooner. In this paper,
we use a very similar approach but instead of applying the
topic modelling algorithm on the linguistic data of the test
scripts, which is not available in manual test cases written in
a natural language, we apply it on the English text of the test
instructions. To understand it more, let us explain the technique
in details.

Though very limited, but the textual instructions in the
manual system-level tests contain information about the fea-
tures being tested. For example, Figure 1, is a sample test case
from our case study, which is testing a bookmarking feature
of the Firefox browser.

One way of summarizing the textual information in the test
cases is using a topic modeling technique like LDA [30]. In
general, LDA, works in two steps [5]: “The first step analyzes
the statistical co-occurrences of the words in the documents
and creates a set of topics”. For instance, in the previous
example, LDA extracts a set of words containing “bookmark”,
“tag”, “folder”, etc. that are mostly occur together when the
test case is about testing a feature of bookmarking. “Each topic



Fig. 1. A typical manual system-level test case in Mozilla Firefox project.

is then defined as a probability distribution over the unique
words in the corpus (set of documents). Words with high
probability in a given topic tend to co-occur frequently. (Note
that the distance between any two words in the document is not
important, only whether they both occur in a given document).
The second step of topic modeling assigns topic membership
vectors to each original document. A topic membership vector
indicates the proportion of words in a document that come
from each topic. The inferred topics are defined as probability
distributions over the corpus vocabulary, and documents are
defined as probability distributions over topics. The number of
topics to be created, K, is a parameter to the model” [5].

In our paper, we apply LDA on the textual description
of test cases (including the summary text) and its expected
results (see Figure 1). Therefore, each document is a test case
and each inferred topic is a collection of words that co-occur
in several test case descriptions. The goal is to prioritize test
cases that cover more of uncovered topics. The exact algorithm
for maximizing the topic coverage is as follows:

Assume we have n test cases and m topics (extracted from
those test cases). Let us define a test case tci with a topic
membership vector of <pi1, pi2, pi3,...pim>, where pij is
the proportion of words in tci that belong to topicj (where
SUM(pi1, pi2, pi3,...pim) = 1) . The goal of our topic-coverage-
based TCP is to rank the n test cases for execution, in a
way that they cover as much topics as possible, sooner in
the text execution phase. To do so, we define two variables:
1) a test suite coverage vector (TSCV), which represents
the maximum coverage per topic, so far, for a given set
of test cases and 2) a total topic coverage measure (TTC),
which is the sum of all maximum topic coverages, in TSCV
(SUM(TSCV[1]+TSCV[2]+...+TSCV[n])). The pseudo code

Fig. 2. Overview of our proposed topic-based TCP technique.

for the topic coverage maximization algorithm is as follows:

Topic Coverage Maximization Algorithm

1) Unranked test cases = All tests
2) Ranked list= φ
3) Select the first test case (tci),

randomly
4) TSCV = <pi1, pi2, pi3,...pim>
5) TTC = 1
6) while there is any unranked test case

in the test suite

a) for all unranked test cases
(tcx=<px1, px2, px3,...pxm>)

i) newTSCV(x)= <MAX(pi1,px1),
MAX(pi2,px2), ...,
MAX(pim,pxm) >

ii)
newTTC(x)=SUM(newTSCV(x)[1]+
newTSCV(x)[2]+ ... +
newTSCV(x)[m])

b) add the test case (tcx) with the
maximum newTTC(x) to the ranked
list

c) remove tcx from the unranked
list and clear the newTTC(x) and
newTSCV(x)

7) return the ranked test suite

Figure 2 summarizes the steps in our topic-coverage-based
TCP. Note that there are still some details about the process
that we have not explained yet, such as pre-processing of the
test cases and tuning the LDA parameters, which we will
discuss about, in the experiment design section (Section IV).

B. Text diversity-based TCP

As we discussed in Section II, diversifying test cases is
another common technique for TCP. For example, a TCP can
maximize the diversity between test cases, where each test
case is represented by a sequence of method calls (statically
[5] or dynamically [20] extracted). In [6], the authors applied
a diversity-based approach directly on the test script without
extracting their method calls. We call this approach a text
diversity-based TCP. The text diversity-based technique treats
test cases as single, continuous strings of words. The technique
uses common string distance metrics, such as the Hamming
distance, on pairs of test cases to determine their dissimilarity.
The intuition is that if two test cases are textually similar, they
will likely exercise the same portion of the source code and
therefore detect the same faults [6], [31].

To measure the distance between two strings (i.e., test
cases), Ledru et al. consider several distance metrics, includ-
ing Euclidean, Manhattan, Levenshtein, and Hamming. The
authors find that the Manhattan distance has the best average
performance for fault detection [6].

To maximize diversity between strings (test cases), Ledru
et al. [6] use a greedy algorithm that always prioritizes the
test case which is furthest from the set of already-prioritized
test cases. To do so, they define a distance measure between a
single test case and a set of test cases. For a test case Ti, the set
of already-prioritized test cases PS, and a distance function
d(Ti, Tj) which returns the distance between Ti and Tj , the
authors define the distance between Ti and PS to be:



AllDist(Ti, PS, d) = min{d(Ti, Tj) | Tj ∈ PS, j 6= i}. (1)

The authors choose the min operator because it assigns high
distance values to test cases which are most different from all
other test cases. The greedy algorithm iteratively computes
the AllDist metric for each un-prioritized test case, giving
high priority to the test with the highest AllDist value at each
iteration [6]. This algorithm has also been used by Thomas et.
al., in [5] as a baseline of comparison.

Our edition of text-diversity-based TCP uses the same
algorithm as described in [6] and [5], but instead of applying it
on the test scripts written in programming languages, we apply
it on the English texts of systems-level test cases. More details
about it will be discussed in the experiment design subsection
in Section IV.

C. Risk-driven clustering

The last technique used in this study uses the historical
fault detection information, described in Section II. This TCP
requires access to the previous execution results of the test
cases, which we had, in this case study. A common risk-driven
TCP [11] only examines the last execution of the test cases.
One can extend it to as many previous executions as possible
[7]. If some tests were failed before, we have to make sure
that we run those tests with the current version (if they are
still applicable). This technique can be combined with other
TCP techniques, as well. For example, one can prioritize the
previously failed test cases using a coverage-based approach
to provide a full ordering of the test cases. In our paper, we
modified this approach and instead of having two clusters of
previously failing vs. non-failing test cases, we create several
clusters with different riskiness factor (mainly because we
had access to this low level information of faults per release,
whereas the original approach does not assume having it). The
highest risk is assigned to the tests that failed in the immediate
version before the current version. The next riskiest cluster are
tests that are not failed in the previous version but failed in the
two versions before the current version, and so on. After the
failing test cases, we assign high priority to test cases that exist
in the previous version, but they were not failing (again the
tests from more recent versions have higher priority). Finally,
we append the new tests.

To be more precise, assume we have n releases, where each
release (i) has some failing tests (FT(i)) and some passing tests
(PT(i)). Now assume we have a set of test cases (TS(n+1)) for
release n+1. The test cases of (TS(n+1)) will be clustered (the
riskiest cluster is C1 and the least risky cluster is C2n+1) based
on their riskiness as follows:

∀ tcx ∈ TS(n+1)
C1= { tcx — tcx ∈ FT(n) }
C2= { tcx — tcx 6∈ C1 AND tcx ∈ FT(n-1) }
C3= { tcx — tcx 6∈ ∪(C1,C2) AND tcx ∈ FT(n-2) }
...
Cn= { tcx — tcx 6∈ ∪(C1,...,Cn−1) AND tcx ∈ FT(1) }
Cn+1= { tcx — tcx 6∈ ∪(C1,...,Cn) AND tcx ∈ PT(n) }
...
C2n= { tcx — tcx 6∈ ∪(C1,...,C2n−1) AND tcx ∈ PT(1) }
C2n+1= {TS(n+1) - ∪(C1..C2n)}

Finally, we need a method to rank the test cases within
each cluster, to provide a full ordering of test cases in our
TCP. This can be done by using any other TCP technique for
the test cases of a cluster. For example, one can just randomly
order them or use a coverage-based or diversity-based TCP.
In (Section IV), we explain these details in our experiment
design.

IV. EMPIRICAL STUDY

In this section, we empirically evaluate different TCP
techniques both in the context of traditional software de-
velopment and rapid release environments. We explain our
research objectives, questions, design, and results on a set of
experiments with three TCP techniques that we have adopted
to the domain of black-box system level test prioritization,
when the tests are written in natural languages.

A. Research objectives and questions

The objective of this research is to examine the effective-
ness of well-known heuristics for test case prioritization in a
special context, where the type of information that is available
for the TCP technique is very limited. In this context, not
only the tests are black-box, which prevents a TCP technique
to have access to the source code, but they are also written in
natural languages. Having tests in natural languages limits the
ability to extract an accurate model of the test execution from
the test case. For example, one type of heuristic that a TCP
technique could use, if the tests were automated scripts with a
proper test driver code in a programming/scripting language,
is to maximize API/method coverage. This is because of the
fact that using such test scripts one can model each test case
with a sequence of API/method calls, even in a black-box
system-level testing. Such models can then be used for test
prioritization. However, there are several situations that the
test cases (specially system-level ones) are not automated test
scripts. These tests, which are designed by test designers, are
mainly aimed for testing the system through its GUIs, by
manual testers. The regression test suites of this types of tests
can grow to a degree that the limited manual testing resources
of the company can not handle them all, in a timely fashion.
So on one hand, we have large test suites to prioritize, and on
the other hand, the common TCP heuristics are not directly
applicable (or empirically evaluated) in this domain.

The TCP problem could be less critical, if we would follow
a traditional development approach and spend a large amount
of time at the end of each release/iteration for testing (which
could be used to retest the entire test suites). However, the
development paradigm is shifting more toward rapid releases
and continuous deliveries [2]. In such an environment rerun-
ning the entire test suite before each release might not be an
option, due to the time constraints, specially if the tests are
manual test cases. Therefore, it is very critical, for the success
of the development team with a rapid release strategy, to have
an effective TCP technique in place (this can be even part of
their build process).

To achieve this objective (finding an effective TCP for
manual black-box tests), we have conducted an experiment
to answer the following research questions:



RQ1: What is the most effective TCP technique for
black-box manual testing, in a traditional software devel-
opment context? In this research question, we compare the
three TCP techniques introduced in Section II (topic-coverage,
text-diversity, and risk-driven). We examine the techniques on
four old releases of Mozilla Firefox, where the development
strategy was not Rapid release.

RQ2: Does the relative effectiveness of the evaluated
TCP techniques from RQ1 change, when the development
moves toward rapid-releases? To answer this question, we
repeat the RQ1 experiment with nine more recent releases of
Mozilla Firefox, where the development strategy was Rapid
release.

B. Subjects of the study

In this paper, we use system testing data from Mozilla
Firefox web-browser project. We compare the system testing
data of two release models. The traditional release model (TR)
was used until March 2011. The rapid releases (RR) started
from version 5.0 and has been practiced ever since. We use
system testing data that we have used in our past work to
study changes in the testing process [25]. Our past work does
not include using this data to study the usefulness of test-suite
prioritization algorithms, which is the focus of this paper.

We collected the data from Litmus system, which, as
explained by a Mozilla QA engineer, is used for regression
testing at Mozilla: “We use it primarily to test past regressions
. . . and as an entry point for community involvement in release
testing” [25]. It consists of written natural language test case
description as exemplified in Figure 1.

We web crawled the Litmus system to get the test cases and
execution results from the full functional test suites of versions
2.0 to 13.0 of the Mozilla Firefox project. The data collection
found 1,547 unique test cases for a total of 312,502 test
case executions across 6 years of testing (06/2006–06/2012),
performed on 2,009 software builds, 22 operating system
versions and 78 locales. Our dataset ends to Firefox release
13.0 as after that Firefox started to use another system testing
service from which we have no data. Table I shows the
statistics about the 13 (four traditional and nine rapid) releases
under study.

TABLE I. SYSTEMS UNDER TEST

Type Release Release No. of No. of Failure
date tests faults rate

TR

Firefox 3.0 12/2006 580 127 21.90%
Firefox 3.5 7/2008 766 138 18.02%
Firefox 3.6 8/2009 828 88 10.63%
Firefox 4.0 2/2010 997 150 15.05%

RR

Firefox 5.0 4/2011 1055 6 0.57%
Firefox 6.0 4/2011 1119 4 0.36%
Firefox 7.0 5/2011 1111 4 0.36%
Firefox 8.0 7/2011 1119 7 0.63%
Firefox 9.0 8/2011 1114 4 0.36%

Firefox 10.0 9/2011 1108 12 1.08%
Firefox 11.0 11/2011 1121 3 0.27%
Firefox 12.0 12/2011 1121 2 0.18%
Firefox 13.0 2/2012 1189 4 0.34%

C. Case study design

The experiments conducted in this study were exactly
the same for RQ1 and RQ2, with the only difference on
their subjects. Since the risk-driven TCP explained in Section
III-C can be implemented in several ways, we have examined
two variants of it (differing in the way intra-cluster entries
are ordered) and answered RQs by comparing five TCPs: a
random TCP (as a baseline of comparison), topic-coverage,
text-diversity, and the two risk-driven TCPs. The first three
TCPs can be applied on any test suite without any extra
information, but the two risk-driven approaches require some
extra information, i.e., historical execution results.

1) Design decisions in TCPs: Next we explain the design
decisions on the implantation of the TCPs that we have used
in the experiments.

RandomTCP: Random ordering of test cases is often used
as a baseline of comparison for a TCP to set the minimum
acceptance bar. RandomTCP does not have any special setting.

TopicCoverage: Covering maximum topics sooner by bet-
ter ordering of test cases is the goal of a topic-coverage-based
TCP. In Section II, we already have introduced the basic idea
behind the approach and its general process, which consists
of data preprocessing, topic extraction, and topic coverage
maximization. The data preprocessing is partially context-
dependant. In our context, we deal with black-box test cases
of a web-browser. Our test cases usually include a URL, but
the main objective of the test is not verifying the correct
loading of a specific page, but rather verifying a functionality
of the browser, on any given website. Therefore we exclude
all URLs. This avoids URLs to become part of the topics. It
worth mentioning that, in general, not always the test cases
are URL-independant. However, our TCP approaches do not
examine the input data (URLs in this case) and only focuses
on the test design.

The rest of preprocessing is quite standard in text-mining
[32]. We first remove special characters (e.g., “&”, “!”, “+”)
and numbers. Next, we split names based on camel case
and underscore naming schemes, for example turning “iden-
tifierName” into the words “identifier” and “name”. Next,
we stem each word into its base form, for example turning
both “names” and “naming” into “nam”. Finally, we remove
common English-language stop words, such as “the”, “it”, and
“is”. These steps help the topic modeling technique (LDA) to
operate on a cleaner dataset and create more meaningful topics.

For the topic extraction step, we use our tool called tcp.lda,
which is an open source tool for TCP using LDA [33]. We
have used the default values for internal LDA parameters
(iteration=200, alpha=0.1, and beta=0.1), where LDA was
shown to be not very sensitive to their changes, in the analysis
that we conducted in [5]. However, we did tune the other
parameter of LDA (i.e., K), which LDA is more sensitive
to. K defines the number of topics to be extracted. Studies
recommend anything between 5-500 [5]. For our small size
corpuses, we tune K in the range of 5 to 50, using the data
from the previous release. Basically, for each release, we run
the LDA-based TCP on the previous release with K=5, 10,
15, ..., 45, and 50. Each TCP is executed 10 times and the
K with the best results (i.e., highest median APFD, which we
introduce later in this section) will be chosen to be used in the



TABLE II. TUNING RESULTS FOR TOPICCOVERAGE AND
TEXTDIVERSITY TCPS.

Type Release Distance function K in
in TextDiversity in TopicCoverage

TR

Firefox 3.0 Euclidean 5
Firefox 3.5 Manhattan 5
Firefox 3.6 Euclidean 10
Firefox 4.0 Manhattan 15

RR

Firefox 5.0 Euclidean 25
Firefox 6.0 Euclidean 15
Firefox 7.0 Manhattan 10
Firefox 8.0 Euclidean 5
Firefox 9.0 Euclidean 50

Firefox 10.0 Manhattan 5
Firefox 11.0 Euclidean 10
Firefox 12.0 Euclidean 10
Firefox 13.0 Manhattan 15

next release. This way we had to exclude the very first release
(Firefox 2.0) from our case study subjects and only use it as the
training set for the second release. Table II shows the results
of tuning for our case study. Given the variations in the results,
we suggest tuning K, before applying a TopicCoverage TCP.

TextDiversity: This approach can be applied on the test
cases without any preprocessing. However, to avoid confound-
ing factors in our experimentation, we apply the very same
preprocessing as the TopicCoverage TCP for TextDiversity,
so that we only compare the effect of the TCP technique
not the preprocessing. The only parameter left to set is the
distance function. tcp.lda tool provides an option for text-
diversity based prioritization, which has two built-in distance
functions: Manhattan [5] and Euclidean [5] (they are selected
in this tool due to their promising results in [6]). In our
experiment, we tune the TextDiversity by running it with both
distance functions 10 times on the previous release. For each
release, we use the distance function that was more effective
(i.e., higher median APFD, to be defined later in this section),
in the previous release.

RiskDriven: As we discussed in Section II, compared
to TopicCoverage and TextDiversity, risk-driven TCPs have
access to some extra knowledge about previous test execution
results (pass or fail). Our version of RiskDriven TCP combines
the results of all previous executions into the riskiness clusters.
Therefore, a TCP should make sure that the tests from the
riskier clusters are ranked higher. However, within each cluster
there can be several test cases with the same riskiness factor.
Thus we need to have a method for ranking the intra-cluster
test cases. To do so, one may use any applicable TCP technique
within a cluster. Note that we still have the restriction of
being black-box, in place; so the options are limited. We
also could not use TopicCoverage, in this case, because of
the very small sizes of some clusters, which makes the topic
extractions meaningless. The two approaches that we use in
this experiments for RiskDriven TCP are RiskDrivenRandom
and RiskDrivenDiversity (where we used the Random and
TextDiversity TCPs, respectively, to rank the intra-cluster test
cases).

2) TCP evaluation: We use the well-known APFD (Aver-
age Percentage of Fault-Detection) metric for assessing the
effectiveness of a TCP, which is originally introduced by
Rothermel et al. in [3]. APFD captures the average of the
percentage of faults detected by a prioritized test suite. APFD

is given by:

APFD = 100 ∗
(
1− TF1 + TF2 + · · ·+ TFm

nm
+

1

2n

)
, (2)

where n denotes the number of test cases, m is the number
of faults, and TFi is the number of tests which must be
executed before fault i is detected. As a TCP technique’s
effectiveness increases (i.e., more faults are detected with
fewer test cases), the APFD metric approaches 100.

We run each of the five TCPs, on each of the four
traditional and nine rapid releases of our case study, 100 times.
To compare the APFD values of the different TCP techniques,
we apply the non-parametric significant test, Mann-Whitney
U test [34], to determine if the difference between the APFD
results are statistically significant (p-value below 0.01).

The significant test tells us that the differences are not
by chance, but it does not tell us how much one technique
outperforms another. To do so, we use a non-parametric
effect size, Vargha-Delaney A measure [34]. The A measure
indicates the probability that one technique will achieve better
performance (i.e., higher APFD) than another technique. When
the A measure is 0.5, the two techniques are equal. When the
A measure is above 0.5, the first techniques outperforms the
other, and vice versa. The closer A measure to 0 or 1.0 the
higher the differences between the two techniques.

To show the practical differences between the TCPs, per
release, we also report the distribution of APFDs for each TCP
over the 100 runs, with a boxplot.

D. Case study results

In this section, we explain and discuss the results of the
experiments under the two RQs.

1) RQ1 Results: To answer the question of “What is the
most effective TCP technique for black-box manual testing,
in a traditional software development context?”, we look at
the effectiveness of the five TCP techniques on the four tradi-
tional releases. Table III summarizes the APFD results as the
median of 100 runs per TCP technique. The hypothesis is that
RiskDriven approaches would outperform RandomTCP, Top-
icCoverage, and TextDiversity because of the extra knowledge
that they have about the previous execution results, specially,
RiskDrivenDiversity, since it uses the heuristics from both
camps. However, Table III shows that RiskDrivenDiversity
is not an obvious dominator. Therefore, we ran a statistical
significant test (Mann-Whitney U test) to first make sure
the differences between RiskDrivenDiversity and the other
TCPs are not by chance. The results are shaded cells in the
Table III. Only two pairs comparisons (RiskDrivenDiversity
vs. RiskDrivenRandom in version Firefox 3.5 and RiskDriven-
Diversity vs. RandomTCP in version Firefox 4.0) are not
significant. Knowing that the differences are not by chance,
we finally look at the effect size measure. Table III also
shows the paired comparisons of effect size (A measures)
between RiskDrivenDiversity and all the other four TCPs. As
we explained A measures less than 0.5 means that RiskDriven-
Diversity is likely to perform worse than the compared with
TCP, which is not uncommon based on Table III (all the other
four techniques at least once outperform RiskDrivenDiversity).



TABLE III. MEDIAN APFDS (OVER 100 RUNS) OF THE FIVE TCPS
AND THE EFFECT SIZES OF RISKDRIVENDIVERSITY VS. ALL OTHER FOUR

TCPS, IN THE FOUR TRADITIONAL RELEASES – RND(RANDOMTCP),
TD(TEXTDIVERSITY), TC(TOPICCOVERAGE),

RDR(RISKDRIVENRANDOM), AND RDD(RISKDRIVENDIVERSITY

versions Median APFD Effect size of RDD vs.
Rnd TD TC RDR RDD Rnd TD TC RDR

Firefox 3.0 53.37 61.95 56.89 62.34 67.32 1.00 1.00 1.00 0.99
Firefox 3.5 51.43 51.02 55.54 50.18 49.99 0.35 0.00 0.03 0.44
Firefox 3.6 52.29 59.95 50.91 55.42 57.09 0.89 0.00 0.98 0.94
Firefox 4.0 53.88 54.08 56.23 54.52 54.03 0.54 0.00 0.14 0.31

Fig. 3. Distribution of the APFDs of the five TCPs on four traditional releases,
over 100 runs, as boxplots.

To summarize all of these statistical comparisons, from a
practical point of view, Figure 3 shows the distribution of the
five TCPs’ APFD, as boxplots. The most clear message that
the figure conveys is that there is no common pattern between
the four releases. Sometimes RiskDriven approaches perform
better and sometimes TopicCoverage or TextDiversity is the
better TCP. In fact, all TCPs including RiskDrivenDiversity
and even RandomTCP perform quite in the same range. There-
fore, RQ1 does not have an easy answer. The only technique
that outperforms all others in more than one release out of four,
is TopicCoverage, which, unfortunately, has a higher variance
and is the worst in Firefox 3.6, which makes it unreliable.

2) RQ2 Results: In RQ2 (“Does the relative effectiveness
of the evaluated TCP techniques from RQ1 change, when the
development moves toward rapid-releases?”), we will analyze
the same five TCPs but on nine more recent releases of Mozilla
Firefox, where the development environment follows rapid
release policies. The fact that the releases are more often,
which results in more test executions, is even more interesting
from the perspective of TCP techniques. The larger test suites
and the more test executions per unit of time, the higher need
for more effective test prioritization techniques. Therefore,
we specifically analyze the TCPs in the rapid releases vs.
traditional releases.

Table IV summarizes the APFD results as the median of
100 runs per TCP technique. The first observation from the
table is that unlike RQ1, both RiskDriven approaches are by far

TABLE IV. MEDIAN APFDS (OVER 100 RUNS) OF THE FIVE TCPS
AND THE EFFECT SIZES OF RISKDRIVENDIVERSITY VS. ALL OTHER FOUR

TCPS, IN THE FOUR RAPID RELEASES.

versions Median APFD Effect size of RDD vs.
Rnd TD TC RDR RDD Rnd TD TC RDR

Firefox 5.0 54.09 54.39 53.46 95.90 96.45 1.00 1.00 1.00 0.76
Firefox 6.0 48.73 74.08 60.40 99.15 99.21 1.00 1.00 1.00 0.57
Firefox 7.0 49.27 36.64 41.09 93.53 92.78 1.00 1.00 1.00 0.15
Firefox 8.0 48.39 32.53 53.53 98.02 97.88 1.00 1.00 1.00 0.31
Firefox 9.0 53.70 33.99 70.03 99.07 98.73 1.00 1.00 1.00 0.03
Firefox 10.0 53.16 39.85 70.17 97.48 97.38 1.00 1.00 1.00 0.21
Firefox 11.0 48.47 28.39 37.58 99.21 99.14 1.00 1.00 1.00 0.06
Firefox 12.0 56.23 36.24 39.19 98.92 98.89 1.00 1.00 1.00 0.33
Firefox 13.0 50.08 69.12 52.67 89.55 95.50 1.00 1.00 1.00 0.98

more effective than the other three TCPs. On average, the me-
dian APFD of the best RiskDriven TCP improves the median
APFD of the best of the other three TCPs by 65% (it ranges
between 34% to 105% in the nine releases). The differences
are also statistically significant and the effect size measure is
always 1.0, when comparing, e.g., RiskDrivenDiversity with
the RandomTCP, TopicCoverage, and TextDiversity.

One plausible explanation is that in rapid release the
modifications on each release are very limited, which makes
the number of faults per release very small, compared to the
traditional releases, as it is seen in Table I. Therefore, in
traditional release many of the defects are from completely
new parts of the code that the older test cases can not detect
them. However, the older test suites in rapid release are still
quite good, for the next release, due to the limited change
in the code. As we said, this is just a hypothesis and further
research is required to validate it.

To study RiskDriven approaches, in more details, we look
at the distribution of the results in the boxplots shown in
Figure 4. Looking at Figure 4, we can see that RiskDriven ap-
proaches not only show higher effectiveness in terms of APFD,
but also less variance (only when comparing with Rnd and
TC) in the results, which increases the reliability of the TCP
technique to be used in other releases and potentially other
systems. The second observation is the close to 100% APFDs
that the RiskDriven approaches constantly show in the nine
releases. These features make them a perfect candidate for TCP
in rapid release environments. Finally, to choose one among the
two, as the best, we should go for RiskDrivenDiversity. Though
the Table IV suggests otherwise, looking at the Figure 4 reveals
that the poor effect size does not practically matter in most
cases (e.g., in Firefox 7.0), since the actual difference is not
practically significant. However, RiskDrivenDiversity shows
less variance compared to RiskDrivenRandom, which can be
a deciding factor. Therefore, though both RiskDrivenDiversity
and RiskDrivenRandom are highly effective and very close
in terms of median APFD, we select RiskDrivenDiversity
as the most effective and reliable TCP for the rapid release
environments.

3) Threat to the validity: In terms of internal and construct
validity, we have reduced the potential threats by building our
system upon existing tools (tcp.lda) and measures (APFD).
The only algorithm that we build from scratch is RiskDriven,
which has carefully explained in the paper and is easy to
implement, with minimum tuning required. The two other
techniques (TopicCoverage and TextDiversity) have been tuned
to reduce the threat of being biased toward a specific topic size



Fig. 4. Distribution of the APFDs of the five TCPs on nine rapid releases, over 100 runs, as boxplots.

or distance function. However, the tuning is not perfect and the
fluctuations from one release to another suggests that we have
not been able to optimize the approaches, yet. In addition, in
the case of rapid release, tuning should also be really fast.
However, we did not specifically examined our tuning’s cost.
Regarding the conclusion validity, since all TCPs studied here
are randomized (sources of randomness are e.g., the initial
selection, topic extraction procedure, random selections in case
of ties, etc.), we have carefully studied the distribution of
results using the TCPs by 100 time running each technique
and reporting statistical significance tests and effect sizes. In
addition, we have looked at the practical differences between
results by plotting the entire distributions by boxplots and
discussing the results. Finally, with respect to external validity,
we should emphasis that this paper reports a case study on
13 releases of Mozilla Firefox. We do not know how much
the results are specific to Mozilla Firefox and believe that
replicating this study on other similar contexts is required,
before robust conclusions can be made.
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VI. CONCLUSION

Continuos delivery and rapid release are becoming very
common in software industry due to several reasons such as
faster time-to-market and frequent user feedback. Keeping the
high quality in this fast paced environment requires a lot of
testing before release. However, the massive test suites of large
scale systems are infeasible to be fully re-tested after every
single change. Therefore, in the context of regression testing,
it is crucial to identify effective test prioritization techniques
that maximize the fault detection power of test cases, for the
given testing budget.

In this paper, we targeted a specific type of testing,
manual black-box system testing, which is a common testing
in practice. The challenge is that such test cases usually
written in a natural language and explain the steps to take
in GUIs. Therefore, unlike usual unit/integration tests, they do
not reveal useful information for a typical test prioritization
technique. Thus we proposed three prioritization techniques



and compared their effectiveness in the context of system
testing at Mozilla Firefox.

Our experiments showed that none of the coverage-based,
diversity-based, and risk-driven approaches are highly domi-
nating the others, in the context of traditional software devel-
opment (version 2.0 to 4.0 of Mozilla Firefox). However, the
risk-driven approach is by far more effective than the others,
in the context of rapid release (versions 5.0 to 13.0 of Mozilla
Firefox). The results of the risk-driven test prioritization ap-
proach for rapid releases are also very close to the optimum
values, which makes the findings very interesting. In the future,
we plan to replicate the study on other software systems and
examine the rationales behind the better results of risk-driven
approach, in more details. We also plan to propose different
variations of the risk-driven approach and compare them with
the basic one, proposed in this paper.
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