
What Are Problem Causes of Software Projects?

Data of Root Cause Analysis at Four Software Companies

Timo O.A. Lehtinen

Department of computer science and engineering

Aalto University School of Science

Espoo, Finland

timo.o.lehtinen@aalto.fi

Mika V. Mäntylä

Department of computer science and engineering

Aalto University School of Science

Espoo, Finland

mika.mantyla@aalto.fi

Abstract—Root cause analysis (RCA) is a structured

investigation of a problem to detect the causes that need to be

prevented. We applied ARCA, an RCA method, to target

problems of four medium-sized software companies and

collected 648 causes of software engineering problems.

Thereafter, we applied grounded theory to the causes to study

their types and related process areas. We detected 14 types of

causes in 6 process areas. Our results indicate that

development work and software testing are the most common

process areas, whereas lack of instructions and experiences,

insufficient work practices, low quality task output, task

difficulty, and challenging existing product are the most

common types of the causes. As the types of causes are evenly

distributed between the cases, we hypothesize that the

distributions could be generalizable. Finally, we found that

only 2.5% of the causes are related to software development

tools that are widely investigated in software engineering

research.

Key words: Root Cause Analysis, Problem Prevention,

Software Process Improvement, Grounded Theory

I. INTRODUCTION

The discipline of software engineering was born in 1968

due to problems in software projects [1]. The key for

effective problem prevention is to know why the problem

occurs [2]. Problems and challenges of software engineering

have been introduced, e.g., Demir [3] indicates that scope

management, requirements management, estimation, and

communication are usual areas of challenges. Unfortunately,

the causes of these challenges have not been

comprehensively presented. There is only little value to

know the problems in contrast to the value of understanding

what causes them.

Root cause analysis (RCA) is a structured investigation

of a problem to detect the causes that need to be prevented

[4]. RCA takes the problem as an input and provides a set of

problem causes as an output. It states what the problem

causes are, in addition, where they occur. This helps with

software process improvement in various contexts and

across all software organizations, including product

development, hardware design, product engineering, and

manufacturing [5].

In some prior RCA studies, the causes of defects have

been presented. Card [6] indicates that the defect causes are

related to the methods, people, input, and tools, but his

classification is quite coarse-grained and is lacking the

software process dimension completely. Grady [7] states

that the top eight causes of defects are specifications, user

interface, error checking, hardware interface, software

interface, logic, data handling, and standards. Grady’s

classification on the other hand sees causes from a technical

perspective but does not go beyond that, e.g., “this line of

code has the error” vs. “why does this line of code have

error whose symptoms are visible in the released product”.

In this work, we want to understand problem causes from

wider than just the technical perspective that Grady

provides, furthermore, we want to provide more details than

Card provides and we want to map the problem causes to

the process dimension. A final difference to prior work is

that the high number of particular types of software defects

is not the only target problem that should be analyzed, e.g.,

negative project experiences, delayed product releases, and

challenging product installations are all industrially relevant

and severe problems but have only been exiguously

explored using RCA [4].

In our previous paper [4], we presented the development

and evaluation of ARCA, an RCA method, in terms of

effort, usefulness and ease of use. The ARCA method

consists of four steps, i.e., target problem detection, root

cause detection, corrective action innovation, and

documentation of the results [4]. In this paper, we introduce

a detailed classification system for the detected causes of the

ARCA method, that we developed by using the grounded

theory approach introduced in [8]. Our classification system

is based on a literature review and causes of four industrial

RCA investigations focusing on complex software

engineering problems. The classification system is thereafter

used to show what types of causes were detected and where

in the development processes they occurred. We discuss the

similarities and dissimilarities of the causes and show what

types of causes were common between the cases and what

were not. This paper makes two important contributions as

it introduces the output of the ARCA method and

simultaneously creates hypotheses on the challenges of

software engineering for future research.

The research goal is as follows: study the causes of

complex software engineering problems by applying

grounded theory to the target problem causes detected in

four medium-sized software companies. The research aimed

to answer the following questions: RQ1: What types of

causes are related to the target problems of cases? In the

context of this study, it describes what the causes are, e.g.,

wrong working methods, lack of instructions, and

challenging existing product. RQ2: In which process areas

the causes of the cases can be mapped? Every cause occurs

somewhere. In the context of this study, this means the

development processes wherein the causes occurred. The

causes are not isolated, instead, they are divided between the

software processes, e.g., the causes of a late product release

are not occurring in the development work only but also in

the requirements engineering and software testing.

II. METHODOLOGY

The cause data was collected in industrial field studies

[9] by using the ARCA method [4] in four medium-sized

software product companies (100 to 450 employees) located

in Finland. The target problem of the ARCA method was

defined in a focus group meeting by the key representatives

of the case company, who also selected the case participants.

The common high-level goal of the companies was to

understand why their software projects are delayed and how

to avoid that. As recommended in the ARCA method, the

target problem causes were detected through an anonymous

e-mail inquiry followed by a causal analysis workshop,

which is a meeting where the case participants write down

the target problem causes and present them to others. The

causes were organized to a cause-effect diagram [4].
The cause data was analyzed by creating two

classification schemes to classify the causes. The
development of the schemes was done in iterations. We
started by a literature review on software engineering root
cause analysis to conclude what kind of cause classification
schemes have been previously introduced [6, 7, 10].
Thereafter, we created a preliminary classification scheme
for both the types and related process areas of causes. Third,
we combined the preliminary classification schemes to the
grounded theory approach [8] and classified samples of the
causes of the cases. During this step, we modified the
preliminary classification schemes to create finalized
classification schemes that actually correspond the causes of
the cases. Finally, we applied the finalized classification
schemes to all causes of the cases.

III. RESULTS

A. Classification Schemes

This section introduces the classification schemes that

were developed in this study. The first scheme describes

what types of causes were detected and the second scheme

describes what software engineering process areas were

affected.

There are three important terms used in this study. The

process area describes where the cause occurs, e.g.

“requirements engineering” or “software testing”. The type

describes what the cause actually is, e.g., “lack of

instructions and experiences” or “lack of monitoring”. The

class means a set of similar types of causes, i.e. “people”,

“tasks”, “methods”, and “environment”. It describes on

general level what types of causes were detected in the cases

and makes it possible for us to compare our results to the

results of the prior studies of RCA [6, 10].

TABLE I. introduces the classification scheme used to

describe the process areas of the causes. These process areas

are similar to the ones found in software engineering

process literature. The list of process areas was created

based on our initial understanding of common software

process steps, and it was refined by the data analysis. If we

compare the process areas to commonly recognized

software processes such as RUP [11] or the waterfall model

[12] we can see several similar steps such as requirements

engineering, testing, change management, product release

and deployment. However, there are also some differences.

First, we have merged software implementation and

software design under a process area called development

work. It would not have been feasible to separate whether

technical problems of the product were due to poor design

or implementation, because our cause data did not support

such a division. Another difference is that we have a process

area called management that gathers causes such as

insufficient resource allocation, bad estimates, poor

prioritization decisions, and bad organizational culture.

Such issues undoubtedly are causes for problems in

software projects, but they cannot be placed under other

process areas. Thus, the management process area is needed

to enable descriptive and honest presentation of the causes.

The final difference to commonly recognized process areas

is the Unknown process area, which includes causes that

cannot be classified into any other process area, e.g.,

“laziness”.

TABLE I. THE PROCESS AREAS OF CAUSES

Process area Description

Requirements
engineering, Re

Causes are focused on the requirements
engineering and input from customers.

Management, Ma Causes are focused on the company support and

the way the project stakeholders are managed and
allocated to tasks.

Development

Work, Dw

Causes are focused on implementation of features

and its output.

Software Testing,

St

Causes are focused on software testing and its

output.

Change
Management, Cm

Causes are focused on implementation of change
requests.

Product Release

and Deployment,

Pd

Causes are focused on installing and releasing the

product.

Unknown, Un Causes that cannot be focused on any specific

process area.

TABLE II. presents the classification scheme used to

describe the types of causes, which are additionally

organized under four classes: people, tasks, methods, and

environment. In prior works, Jalote [10] and Card [6]

present a similar coarse-grained classification of cause

classes. Unfortunately, these classification schemes are too

general as they do not go under the classes. We wanted to

extend these classification schemes to provide more details

of the problem causes. Thus, we added the type level. For

the type level there was no prior work, thus, it is completely

based on our analysis of the problem causes.

TABLE II. THE CAUSE CLASSES AND RELATED TYPES OF CAUSES

Class / Type Description

People, P This class includes the people related causes

Instructions and

Experiences

This type includes causes of missing documentation

and lack of experience. The needed documentation

is missing or inaccurate, and the lack of experience
complicates the work.

Values and

responsibilities

This type includes causes of bad attitude and lack of

taking individual responsibility. The people do not
care about important things and they look out for

number one.

Co-operation This type includes causes of inactive, inaccurate,
and missing communication between the

stakeholders. The people do not communicate

actively or share knowledge on their own will.

Policies This type includes causes of not following the

company policies.

Tasks, T This class includes the task related causes

Task Priority This type includes causes of task priority. The
priority is missing, wrong, or too low.

Task Output This type includes causes of low quality task

output. In our terminology the task is a general term

which corresponds the tasks of all stakeholders, e.g.

the managers may do inadequate resource allocation

whereas the developers may do bad code, etc.

Task Difficulty This type includes causes of challenging tasks. The

task requires too much effort, time, or it is too

difficult.

Methods, M This class includes the methodological causes

Work Practices This type includes causes of lack of current working

methods. The method is missing or inadequate.

Process This type includes causes that are focused on the
current operations model. The model is unclear,

vague, too heavy, or inadequate.

Monitoring This type includes causes of lack of monitoring.
The management does not know the project status

caused by the lack of monitoring the progress.

Environment,

E

This class includes the environment related causes

Existing

Product

This type includes causes of the existing product,

which is too complex and the old low-quality code
creates challenges.

Resources and

Schedules

This type includes causes of wrong resources and

schedules.

Tools This type includes causes of missing or insufficient
tools.

Customers This type includes causes of customer requests and

users expectations and needs.

The people class includes types of causes that correspond

to human aspects. The tasks class includes types of causes

that correspond to the causes that were closely related to

implemented tasks. The methods class includes types of

causes that correspond to the causes of wrong working

methods. The environment class describes the type of causes

that are related to external settings of the work. The detailed

types of causes including their descriptions are placed under

each class as can be seen in TABLE II. .

B. Cause Distributions

TABLE III. summarizes the types of target problem

causes and shows how they divide into the software

processes. We also report the totals of causes for each

process area and type. Next to the totals is the standard

deviation between cases. This is reported to help in

analyzing the external validity of the cause distribution.

High standard deviation indicates that the cause distribution

is highly affected by the case context. Low standard

deviation between cases suggest that the distribution could

be generalizable, but with only four cases it is only possible

to draw initial hypotheses. It should be noted that when

looking at the standard deviation one should always contrast

it with the total average.

The lack of instructions and experiences included the

highest number of causes (18.1 %), which was mainly

divided into the requirements engineering, development

work, software testing, and product release and deployment.

The wrong work practices included the second highest

number of causes (15.7 %), which was mainly divided into

the software testing, development work, management, and

product release and deployment. Looking at the deviations

we can see that shares of Instructions and Experiences could

be generalizable (deviation 3.4 units from total share of

18.1%), but that shares of existing product do not seem

generalizable (deviation 7.8 from the total share of 8.5%)

From the process perspective, the software testing

(23.1 %) and development work (22.6 %) included the

highest number of causes. The causes of software testing

divided mainly into the wrong work practices, lack of

instructions and experiences, insufficient task output, task

difficulty, and wrong resources and schedules. The causes

of development work were mainly similar to those in the

software testing, but the existing product was more often

referred (2.5 %) whereas the insufficient task output was

less often referred (0.9 %).

The deviations between cases are higher in the process

areas than it is in the types of causes. From the recognized

process areas, only the development work process area has a

low standard deviation (7.9) in comparison to the total share

of causes (22.6%). Thus, we can hypothesize that shared

causes per process area are more dependent on the case

context than the type of causes, which seem more general.

C. Limitations

As the total number of cases was only four, the results need

to be validated by further studies. However, in contrast to

TABLE III. PERCENTAGES OF THE TYPE OF CAUSES IN SOFTWARE PROCESS AREAS (A TOTAL OF 648 CAUSES)

Cause type, Class
Process Area

Re Ma Dw St Cm Pd Un Total Std*

Inst. and Exp., P 3.4 2.3 5.1 2.9 0.3 2.6 1.4 18.1 3.4

Work Pr., M 0.8 2.3 4.3 5.6 0.9 1.5 0.3 15.7 5.2

Task Output, T 3.2 3.5 0.9 2.9 0.2 0.6 0.3 11.7 4.8

Task Difficulty, T 0.6 0.3 3.1 2.9 0.5 2.0 0.2 9.6 4.5

Existing Pr., E 0.3 0.3 2.5 0.9 0.3 2.2 2.0 8.5 7.8

Res. and Sch., P 0.6 1.1 1.9 2.5 0.2 0.5 0.8 7.4 3.5

Val. and Resp., P 0.9 1.5 1.5 1.4 0.5 0.6 0.5 6.9 5.2

Process, M 0.0 0.2 0.6 1.2 1.1 1.4 1.1 5.6 0.7

Policies, P 0.5 0.2 0.5 0.8 0.3 0.8 0.5 3.4 1.6

Co-operation, P 1.4 0.9 0.8 0.0 0.2 0.0 0.0 3.2 2.9

Customers, E 1.5 0.0 0.3 0.2 0.0 0.5 0.8 3.2 1.6

Tools, E 0.2 0.3 0.2 1.5 0.2 0.2 0.0 2.5 0.6

Task Priority, T 0.0 0.2 0.8 0.2 0.9 0.0 0.3 2.3 2.6

Monitoring, M 0.0 0.8 0.2 0.2 0.3 0.2 0.2 1.7 2.5

Total 13.4 13.9 22.6 23.1 5.7 13.0 8.2 100

Std* 12.3 10.9 7.9 15.2 6.1 17.5 1.8

Std* = deviation of % units between the cases

prior studies [6, 7, 10] our results are based on more than

one case and thus are more externally valid than they are.

Effect of the case context, both the company context and the

chosen RCA focus is likely to be high. The deviation

between the cases varied between process areas and types.

The classification scheme was jointly developed and partly

based on the existing literature. The classification of the

causes was done only by the first author, which increases

the possibility of the researcher bias. We plan to address this

in our future work on this topic.

IV. CONCLUSIONS

In this paper we have created a two-dimensional

classification of software problem causes based on four

industrial RCA field studies resulting in 648 causes. The

first dimension of the classification is based on common

software engineering process areas. The second dimension

describes the type of causes and it extends prior works of

software engineering root cause analysis [6, 7, 10] by giving

more detailed types under the general classes of people,

tasks, methods, and environment. Our classification is

useful for understanding problem causes as it highlights

both the process areas where improvements should be made

and also the types of improvements that need to be made,

e.g. do we have a problem with tools or work practices.

We have also presented a distribution of causes with our

two-dimensional classification system. In it, we found that

instructions and experiences was the most common cause

type followed by insufficient work practices. It is interesting

to note that tools were mentioned in only 2.5% of the

causes, although a great deal of software engineering

research is focused on building new tools. In the software

process dimension the process areas with most causes were

development work and software testing. However, the

deviation between the cases was higher in the process area

dimension. Therefore, we believe that case context and

focus has a larger effect on the process area of the causes

compared to the types of causes.

V. REFERENCES

[1] P. Naur and B. Randel, Software engineering: A report on a conference

sponsored by the NATO science committee, Nato, 1969.
[2] J. J. Rooney and L. N. Vanden Heuvel, Root cause analysis for

beginners, Quality Progress 37 (7) (2004) 45 - 53.

[3] K. A. Demir, A survey on challenges of software project management,
Proceedings of the 2009 International Conference on Software Engineering

Research Practice, 2009, pp. 13-16.

[4] T. O. A. Lehtinen, M. V. Mäntylä and J. Vanhanen, Development and
evaluation of a lightweight root cause analysis method (ARCA method) –

field studies at four software companies, Information and Software

Technology 53 (10) (2011) 1045-1061.
[5] R. G. Mays, Applications of Defect Prevention in Software

Development, IEEE Journal on Selected Areas in Communications 8

(1990) 164-168.
[6] D. N. Card, Learning from our mistakes with defect causal analysis,

IEEE Software 15 (1) (1998) 56-63.

[7] R. B. Grady, Software failure analysis for high-return process
improvement decisions, Hewlett-Packard Journal 47 (4) (1996) 15 - 25.

[8] S. Salinger, L. Plonka and L. Prechelt, A coding scheme development

methodology using grounded theory for qualitative analysis of pair
programming, 19th Annual Psychology of Programming Workshop,

Joensuu, 2007, pp. 144-157.
[9] T. C. Lethbridge, S. Elliott Sim and J. Singer, Studying software

engineers: Data collection techniques for software field studies, Empirical

Software Engineering 10 (3) (2005) 311-341.
[10] P. Jalote and N. Agrawal, Using defect analysis feedback for

improving quality and productivity in iterative software development,

Proceedings of the Information Science and Communications Technology

(ICICT 2005), 2005, pp. 701 - 714.

[11] I. Jacobson, G. Booch and J. Rumbaugh, The Unified Software

Development Process. Addison-Wesley, 1998.
[12] W. W. Royce, Managing the development of large software systems:

Concepts and techniques, Proceedings of Wescon, 1970, pp. 1-9.

